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ABSTRACT 

 This study analyzes the performance of five satellite-derived precipitation products relative to ground-

based gauge observations. The satellite products estimate precipitation using passive microwave (PMW) and/ 

or infrared (IR) observations. Differences in these observation methods lead to seasonal and regional biases 

that influence the operational utility of the satellite precipitation estimates. In turn, these products require 

informed interpretation by forecasters. Five years of daily satellite precipitation estimates (2010–14) are 

composited into two types of seasonal and annual maps to characterize performance. The seasonal composites 

reveal positive biases during summer and greater variability among satellite products during winter. Each 

satellite product overestimates the maximum daily precipitation relative to gauge throughout much of the 

central and eastern United States. In this region, the 95th percentile of gauge-reported daily precipitation 

values generally range between 20 and 40 mm day
–1

, whereas the satellite-reported values generally exceed 40 

mm day
–1

. Winter exhibits greater variability among satellite products with a mix of both positive and 

negative biases. The bias magnitudes are greater and the spatial correlations are lower (i.e., the composite 

maps are less similar) during winter than during summer. The IR-based products generally overestimate 

winter precipitation north of 36°N, and the PMW-based products performed poorly in mountainous regions 

along the West Coast. These results characterize biases in satellite precipitation estimates to better inform the 

user community and help researchers improve future versions of their operational products. 

 
 

1. Introduction 

 Successful use of satellite-derived precipitation 

estimates requires verification at various spatial and 

temporal scales. The Cooperative Institute for Climate 

and Satellites at the University of Maryland (CICS-

MD) produces daily and seasonal validation statistics 

over the contiguous United States (CONUS) for many 

precipitation products using a common International 

Precipitation Working Group (IPWG) framework. 

This routine monitoring focuses on products produced 

by the National Oceanic and Atmospheric Administra-

tion (NOAA) and the National Aeronautics and Space 

Administration (NASA). A website is updated daily to 

provide monitoring and validation tools to operational 

users and algorithm developers (cics.umd.edu/ipwg/). 

 

The present study expands upon the ongoing CICS-

MD validation efforts, and complements satellite 

performance statistics documented by many previous 

studies (e.g., Arkin and Meisner 1987; Adler et al. 

1993; Ebert et al. 1996, 2003, 2007; Joyce et al. 2004; 

Tian et al. 2007; Sapiano et al. 2010). This manuscript 

summarizes the performance of satellite precipitation 

estimates so that National Weather Service (NWS) 

forecasters can better apply these products. 

 Satellite precipitation estimates are analyzed at 

annual and seasonal time scales to document their 

accuracy and precision. We composite daily validation 

statistics routinely produced at CICS-MD to investi-

gate factors contributing to seasonal and regional 

biases in the satellite-derived precipitation estimates. 

http://dx.doi.org/10.15191/nwajom.2016.0405
mailto:scott.rudlosky@noaa.gov
http://cics.umd.edu/ipwg/
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Networks of ground-based gauges and Weather Sur-

veillance Radar-1988 Doppler (WSR-88D) radars are 

the two most common tools for validating satellite 

precipitation products over the CONUS. Validation 

over multi-year periods provides many benefits, 

including the study of interannual variations in global 

mean precipitation, as well as the identification of 

biases related to synoptically produced precipitation 

(Janowiak et al. 2005). Recognition of systematic 

biases can help forecasters make more informed deci-

sions using the products available to them. This study 

illustrates conditions under which the various products 

are reliable versus when and where additional caution 

must be taken. 

 Satellite precipitation is estimated using both 

infrared (IR) and passive microwave (PMW) sensors. 

IR-based products are derived from cloud-top bright-

ness temperatures, which are less closely related to 

surface rainfall rates than PMW, but the low-earth 

orbiting PMW sensors provide less frequent sampling 

than the geostationary IR sensors (Arkin and Xie 

1994). Ebert et al. (2007) and Sapiano et al. (2010) 

showed that PMW estimates outperform IR estimates, 

but found that a combination of the two produces 

superior results. The satellite precipitation estimates 

analyzed herein use various algorithms and sensors, 

which introduce a unique set of biases into each 

product. Systematic biases in the satellite estimates 

accumulate over time, influencing flood monitoring, 

surface runoff studies, and the study of global climate 

change (Tian et al. 2007). 

 The present study analyses five years (2010–14) of 

daily satellite precipitation estimates from five differ-

ent NOAA and NASA products over the CONUS. 

Five years of data helps reduce impacts of individual 

synoptic events, allowing analysis of precipitation 

patterns on seasonal and annual scales. Many opera-

tional applications require accurate precipitation esti-

mates, so this study examines daily composites of 

operational products that are provided to forecasters at 

finer temporal resolutions (i.e., those with update fre-

quencies <24 h). Although some of the variability in 

the finer-resolution products mixes out on the daily 

scale, the daily composites are sufficient to describe 

the general performance tendencies. Section 2 de-

scribes the satellite, radar, and gauge precipitation 

products as well as the validation methods. Section 3 

presents results on both seasonal and annual time 

scales. Section 4 discusses the results and highlights 

important knowledge required to best apply the satel-

lite precipitation estimates in operations. 

2. Data and methods 

a. Data 

 The satellite precipitation estimates evaluated 

herein represent the most common operational pro-

ducts as well as a variety of algorithm techniques and 

observation platforms. Product providers periodically 

implement updated versions to incorporate new sen-

sors and/or algorithm techniques, which introduces 

some additional variability that we do not examine. 

This study evaluates the operational versions of the 

various products as they were provided in near real-

time. 

 The NASA Tropical Rainfall Measuring Mission 

(TRMM) Multi-Satellite Precipitation Analysis 

(TMPA, Versions 6/7) includes a 3B42RT product that 

combines PMW and PMW-calibrated IR to estimate 

precipitation in near real-time (Huffman et al. 2007). 

3B42RT refers to a combination of the TRMM real-

time merged passive microwave (3B40RT) and micro-

wave-calibrated IR (3B41RT) products. PMW rain 

rates are first inter-calibrated using the combined 

TRMM Microwave Imager and Precipitation Radar 

product, which is then used to calibrate the IR input 

(Huffman et al. 2007). The PMW and IR are then 

considered comparable enough to be combined, using 

the PMW data where available and IR data in PMW 

coverage gaps (Sapiano and Arkin 2009). The combi-

nation of PMW and IR data makes 3B42RT most sim-

ilar to the Climate Prediction Center (CPC) morphing 

technique (CMORPH). 

 CMORPH also blends PMW and geostationary IR 

observations (Joyce et al. 2004; Joyce and Xie 2011). 

CMORPH uses PMW estimates from all available 

sensors, including those on the NOAA polar-orbiting 

operational meteorological satellites, the United States 

Defense Meteorological Satellites Program, and 

TRMM. CMORPH only directly uses PMW radiances 

to estimate precipitation (i.e., the IR radiances are not 

used directly). Consecutive IR images are used to 

compute precipitating cloud system advection vectors, 

which are then used to propagate and interpolate in-

stantaneous PMW observations in a combined time-

space domain (Joyce et al. 2004; Joyce and Xie 2011). 

Thus, CMORPH uses the PMW to estimate instantan-

eous precipitation and the IR-derived motion vectors 

for propagation (Joyce and Xie 2011). The direction 

and speed of IR cloud tops may not always correlate 

well with the propagation of the precipitation at lower 

levels, motivating development of a speed adjustment 
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procedure to modify the motion vectors and correct for 

this (Joyce et al. 2004). 

 The National Environmental Satellite, Data, and 

Information Service (NESDIS) Self-Calibrating Multi-

variate Precipitation Retrieval (SCaMPR) product only 

uses IR observations directly, but the algorithm cali-

brates IR data against PMW observations (Kuligowski 

2002; Kuligowski et al. 2013). The product selects 

from a set of possible predictors, including three of the 

Geostationary Operational Environmental Satellite 

(GOES) channels and two other satellite-based precip-

itation estimates (Kuligowski 2002; Kuligowski et al. 

2013). The algorithm routinely calibrates the relation-

ship between the IR brightness temperatures and rain-

rate estimates. In this way, SCaMPR combines the 

more accurate PMW precipitation estimates with the 

more frequently available and higher spatial resolution 

IR observations. For a small number of cases, Kuli-

gowski (2002) found that SCaMPR had smaller overall 

bias (and bias as a function of rain rate) than other IR-

based precipitation estimates. However, Kuligowski et 

al. (2013) showed that during extended periods of dry 

weather or very light rain, the most recent SCaMPR 

calibration became trained for little or no rain, and 

thus performed very poorly for heavier precipitation. 

Although this was adjusted when SCaMPR began 

running in real-time during November 2004, regions 

remain where SCaMPR performs poorly for heavy 

precipitation. Based on the results of Kuligowski et al. 

(2013), the real-time version of SCaMPR was modi-

fied to correct for bias using TRMM data, which re-

duced both the occurrence and volume of false precip-

itation detections. 

 In addition to the three blended PMW/IR products, 

we also analyze two IR-only products. The CPC uses 

IR observations to produce the GOES Precipitation In-

dex (GPI; Arkin and Meisner 1987). GPI is a function 

of 1) the mean fractional coverage of clouds colder 

than 235K in 0.25°  0.25° grid cells, 2) the length of 

the averaging period in hours, and 3) a numerical con-

stant (Arkin and Meisner 1987). GPI uses only IR data 

over the CONUS because there are no geostationary 

IR coverage gaps. The NESDIS Hydro-Estimator pro-

duct also uses GOES IR data, but corrects for the 

evaporation of raindrops to help improve accuracy. 

Based on the NESDIS Auto-Estimator algorithm 

(Vicente et al. 1998), the Hydro-Estimator defines 

pixels as raining if their temperatures are below the 

average temperature for the surrounding area. The 

greatest precipitation rates are assigned to the coldest 

areas relative to their surroundings (Scofield and Kuli-

gowski 2003; Sapiano and Arkin 2009). 

 A composite of NWS WSR-88D radar data also is 

evaluated alongside the satellite and gauge estimates. 

The National Centers for Environmental Prediction 

(NCEP) merges WSR-88D radar data with gauge 

observations to produce multi-sensor precipitation 

estimates (Stage II/IV; Lin and Mitchell 2005). Gauge-

adjusted radar products (e.g., Stage IV) outperform the 

radar-only Stage II analysis. However, the present 

study uses the radar-only Stage II product with no bias 

correction to help illustrate the limitations of remotely 

sensed products derived from a single source. The 

radar-only product merges estimates from all indi-

vidual WSR-88D radars onto the national Hydrologic 

Rainfall Analysis Project (HRAP) grid. Bins contain-

ing more than one radar estimate are averaged using 

simple inverse distance weighting, and the radar-only 

estimates are not quality controlled (e.g., no removal 

of anomalous propagation). Although biases in radar-

derived precipitation vary non-uniformly over individ-

ual radar domains as a function of range, azimuth, pre-

cipitation type, and other factors, this non-uniformity 

has not been corrected for in our radar data. 

 The CPC unified global daily gauge analysis pro-

vides the ground truth for this study. This global gauge 

dataset includes ~32 000 daily reports during the his-

torical period of 1979–2006, and ~17 000 daily real-

time reports since 2007 (Xie et al. 2010). Quality 

control is performed through comparisons with histori-

cal records, independent measurements from nearby 

stations, concurrent radar/satellite observations, and 

numerical model forecasts (Xie et al. 2010). The 

quality controlled station reports are interpolated to 

create daily precipitation estimates that consider oro-

graphic effects (Xie et al. 2007). An optimal inter-

polation technique is used because that presents the 

best skill for both daily and monthly precipitation (Xie 

et al. 2007; Chen et al. 2008). The daily CPC analysis 

is constructed on a 0.125° latitude/longitude grid over 

all global land areas, and is objectively analyzed to a 

0.25
o
 latitude/longitude grid for the present study 

using the Cressman (1959) inverse-distance weighting 

interpolation algorithms. Objective analysis techniques 

have been shown to broaden the spatial coverage of 

very light precipitation observations and dampen the 

intensity of heavy rainfall events (Ebert et al. 2007). 

The resulting gauge data provide the best characterized 

estimate of precipitation at the surface over the 

CONUS. 

 



 

Rudlosky et al. NWA Journal of Operational Meteorology 1 March 2016 

ISSN 2325-6184, Vol. 4, No. 5 61 

a. Methods 

 Five years of daily precipitation estimates (2010–

14) were composited into two types of seasonal and 

annual maps. These composite maps help validate and 

understand the performance of the precipitation esti-

mates. A conditional threshold of 0.1 mm day
–1

 was 

used throughout this study to reduce contamination 

from very light precipitation. Average conditional and 

maximum (95th percentile) precipitation composite 

maps were produced on a 0.25°  0.25° grid over the 

CONUS. All precipitation observations >0.1 mm day
–1

 

were summed within the 0.25° grid cells over various 

time periods to compute sum-composite maps. Aver-

age conditional composite maps then were created by 

dividing the sum composites by the number of days in 

each grid cell when the corresponding product (i.e., 

satellite, radar, or gauge) observed precipitation >0.1 

mm day
–1

. Thus, this study examines the average for 

days with precipitation, not the daily average precipi-

tation. Maximum precipitation composite maps signify 

the 95th percentile of daily rainfall at each grid point 

during the specified time period. The average condi-

tional composites characterize precipitation estimates 

from the entire period (2010–14), whereas the maxi-

mum composites represent values observed on individ-

ual days (i.e., the heaviest precipitation events). The 

composite maps form the basis for our analysis, and all 

of the statistics described herein are derived from these 

annual and seasonal composites. 

 The average conditional and maximum composites 

were used to calculate several statistics to investigate 

the product performance. Spatial bias maps were cre-

ated by differencing satellite composites with the 

gauge and radar composites. Seasonal and annual 

composite maps also were spatially correlated with 

their corresponding gauge and radar composites to 

explore spatial similarities among the composite maps. 

The correlations and spatial bias maps quantify the 

overall product accuracy and also capture the seasonal 

and regional variability. Average biases were comput-

ed to provide CONUS-wide baselines for the seasonal 

and regional analyses. These average biases result 

from averaging biases from all of the 0.25° grid cells 

in the various annual and seasonal composites (i.e., for 

13 191 CONUS grid cells). 

 Bias frequency histograms expand beyond the 

average bias values to show the distribution of biases 

within each composite map. These histograms illus-

trate the skewness and spread in the distributions, and 

facilitate associations among the PMW, IR, radar, and 

gauge estimates. Bias frequency histograms better 

depict the product accuracy for each annual and sea-

sonal time period than the average biases. For exam-

ple, a satellite algorithm might have a small average 

bias but a wide spread with both large positive and 

large negative biases. In this case, the small average 

bias (apparently good performance) would not accu-

rately represent the performance of the daily satellite 

estimates. 

 The probability of detection (POD) and false 

alarm ratio (FAR) are the final statistics used to inves-

tigate the detection accuracy. The POD is the fraction 

of instances where the gauge measures >0.1 mm day
–1

 

for which the satellite also estimates precipitation >0.1 

mm day
–1

. The FAR is the fraction of instances where 

the satellite estimates >0.1 mm day
–1

 for which the 

gauge measures <0.1 mm day
–1

. The POD and FAR 

are calculated only for grid cells with 30 observations 

to ensure representative samples. 

 This study only includes days when the gauge, 

radar, and all five satellite products are available. 

Issues with the daily data feeds led to missing or 

incomplete data records, and many of these missing 

data remain unrecoverable without considerable effort. 

All seven sources are available for 327 (2010), 340 

(2011), 195 (2012), 274 (2013), and 320 (2014) days. 

Rather than ending mid-season, the analysis is extend-

ed into January and February 2015 (55 additional 

days). There are 353, 396, 388, and 376 days during 

fall, winter, spring, and summer, respectively (with the 

largest outage occurring during fall 2012). The 5-yr 

performance period is sufficient to examine seasonal 

patterns with limited interference from day-to-day 

synoptic systems. 

 

3. Results 

 Average conditional composites of daily precipita-

tion illustrate the spatial distribution of the satellite, 

radar, and gauge estimates over the CONUS during 

2010–14 (Figs. 1–2). The average conditional compos-

ite maps depict the average precipitation rate when 

>0.1 mm day
–1

 is observed. Figure 1 reveals that the 

CMORPH (panel a), gauge (c), and radar (d) observe 

similar precipitation patterns, with average conditional 

precipitation rates >10 mm day
–1

, 6 mm day
–1

, and 5 

mm day
–1

, respectively, over the Great Plains and 

southeastern CONUS. Average conditional precipita-

tion values generally are <4 mm day
–1

 west of the 

Great Plains, with the exception of large gauge values 

along the West Coast. Figure 1d also reveals radar 
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Figure 1. Average conditional precipitation composites over the CONUS during 2010–14 for (a) CMORPH, (b) radar minus gauge, (c) 

gauge, (d) radar, (e) CMORPH minus gauge, and (f) CMORPH minus radar. Average conditional composite maps result from summing the 

precipitation in each grid cell on days with >0.01 mm day–1 and dividing by the number of days when the satellite, gauge, and/or radar 

observed >0.01 mm day–1. Click image for an external version; this applies to all figures hereafter. 

 

http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_1.png
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Figure 2. Average conditional precipitation composites over the CONUS during 2010–14 for (a) SCaMPR, (b) 3B42RT, (c) GPI, and (d) 

Hydro-Estimator. Average conditional composite maps developed as in Fig. 1. 

 

coverage issues in the western CONUS (using the ra-

dar-only Stage II product). 

 Figures 1b, 1e, and 1f illustrate differences (bias-

es) between the average conditional precipitation com-

posites. These spatial bias maps result from subtract-

ing the average conditional gauge composites from the 

average conditional satellite and radar composites. 

Over large portions of the Great Plains, CMORPH 

generally overestimates precipitation by >3 mm day
–1

 

relative to gauge (Fig. 1e) and >5 mm day
–1

 relative to 

radar (Fig. 1f). The radar minus gauge bias is between 

±2 mm day
–1

 over large portions of the CONUS (i.e., 

white grid cells, Fig. 1b). The radar and gauge grids 

differ along the West Coast and in large parts of the 

eastern CONUS, where the radar-only Stage II product 

generally underestimates precipitation by 3–5 mm  

day
–1

 relative to gauge. 

 Figure 2 displays the average conditional compos-

ites for the four additional satellite precipitation esti-

mation products (2010–14). 3B42RT (Fig. 2b) most 

closely resembles the CMORPH, gauge, and radar 

composites (Fig. 1), while the three remaining satellite 

products (Figs. 2a,c,d) exhibit considerably greater 

values. The corresponding spatial bias maps reveal 

that spatial bias patterns for SCaMPR and 3B42RT 

(not shown) are most similar to CMORPH (Fig. 1e). 

Conversely, the greatest GPI and Hydro-Estimator 

overestimates occur outside of the Great Plains. The 

greatest GPI overestimates are in the northwestern 

CONUS (4–8 mm day
–1

), and the greatest Hydro-Esti-

http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_2.png
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mator overestimates are in the southwestern CONUS 

(>15 mm day
–1

). During 2010–14, the average condi-

tional precipitation from the Hydro-Estimator exceeds 

the gauge values by >4 mm day
–1

 throughout the CO-

NUS. 

 The spatial satellite precipitation distributions ap-

pear most similar when examining the maximum daily 

precipitation observed at each grid cell (Fig. 3). Maxi-

mum composite maps signify the 95th percentile of the 

daily precipitation distributions in each grid cell, and 

only characterize days with 0.1 mm day
–1

. Although 

the satellite estimates have similar spatial patterns, 

their magnitudes are much greater than the gauge 

magnitudes. Aside from the GPI, each satellite greatly 

overestimates the maximum daily precipitation relative 

to the gauge throughout much of the central and east-

ern CONUS. In these regions, the gauge-reported max-

imum daily precipitation values generally range be-

tween 20 and 40 mm day
–1

, whereas the satellite-re-

ported values generally exceed 40 mm day
–1

. The 

SCaMPR and Hydro-Estimator products exhibit the 

greatest overestimates, with maximum daily precipi-

tation values exceeding 60 mm day
–1

 over large por-

tions of the central CONUS. 

 Spatial bias maps for summer (June–August, Fig. 

4) and winter (December–February; Fig. 5) are pro-

duced by differencing the average conditional satellite 

and gauge composites. The spatial bias maps only 

characterize the condition when both the satellite- and 

gauge-estimated precipitation are >0.1 mm day
–1

. 

These figures quantify the overestimates spatially, and 

also illustrate their seasonality. During summer (Fig. 

4), the GPI is most similar to the gauge, with the ma-

jority of the CONUS falling in the ±2 mm day
–1

 range. 

Each of the remaining satellite estimates exceeds the 

gauge values over large portions of the central and 

eastern CONUS. The summer overestimates for the 

3B42RT, CMORPH, SCaMPR, and Hydro-Estimator 

have ranges of 2–4, 2–5, 5–15, and 4–10 mm day
–1

, 

respectively. 

 Winter exhibits different satellite and gauge pre-

cipitation distributions than summer. During winter, 

CMORPH (Fig. 5b) underestimates precipitation rela-

tive to the gauge along the entire West Coast, through-

out much of the southern CONUS, and along the East 

Coast (2–10 mm day
–1

). 3B42RT (Fig. 5d) underesti-

mates winter precipitation along the West Coast, but 

overestimates winter precipitation over most of the 

eastern CONUS (>3 mm day
–1

). Figure 5c shows that 

SCaMPR underestimates winter precipitation over por-

tions of Washington, Oregon, California, Mississippi, 

and Alabama, but generally overestimates winter pre-

cipitation north of 36°N. GPI (Fig. 5e) has a similar 

spatial pattern to SCaMPR, but the magnitudes of the 

GPI overestimates are much larger. The Hydro-Esti-

mator generally overestimates winter precipitation 

throughout the CONUS by >5 mm day
–1

. 

 The biases are further composited into average 

biases (Fig. 6) and bias frequency histograms (Fig. 7) 

to better understand the seasonal patterns. Biases from 

all 13 191 of the 0.25° grid cells in the average con-

ditional composites are averaged to compute baseline 

CONUS-wide values for each product and season (Fig. 

6). During summer, in areas with 0.1 mm day
–1

, each 

of the satellite products overestimates precipitation 

relative to the gauge. SCaMPR, Hydro-Estimator, and 

CMORPH have the largest average biases relative to 

the gauge (>1 mm day
–1

), while GPI and 3B42RT have 

smaller positive average biases. During spring, each of 

the IR-based satellite estimates has a positive average 

bias (i.e., SCaMPR, Hydro-Estimator, and GPI), while 

both of the estimates that use PMW directly have neg-

ative average biases (CMORPH, 3B42RT). Although 

3B42RT has a small positive average bias during win-

ter (0.22), CMORPH has a large negative average bias 

(–1.15). 

 Bias frequency histograms complement the aver-

age biases to quantify both the accuracy and precision 

of the satellite precipitation estimates (Fig. 7). The 

inlaid average biases summarize individual lines on 

the bias frequency histograms. The bias frequency 

histograms clearly depict the spread in bias for indi-

vidual satellites and seasons. Each of the satellite 

distributions are positively biased during summer (Fig. 

7a), indicating that large overestimates occur more 

frequently than large underestimates. During summer, 

>50% of the 3B42RT, GPI, and radar biases are in the 

–0.5 to 0.5 range, while only ~30% of the CMORPH, 

SCaMPR, and Hydro-Estimator biases fall in that 

range. The average biases for 3B42RT and GPI are 

0.40 and 0.04 mm day
–1

, respectively, while the other 

satellites range from 1.1 to 1.5 mm day
–1

. Pearson 

correlation coefficients (r) between the satellites and 

gauge composites range between 0.75 and 0.93 during 

summer. 

 Winter exhibits a mix of positive and negative 

biases (Fig. 7b). During winter, the bias magnitudes 

are greater and the spatial correlations are lower than 

during summer (i.e., the composite maps are less 

similar). Only the 3B42RT bias frequency occurrence 

peaks in the –0.5 to 0.5 mm day
–1

 range, while 

CMORPH peaks between –1.5 and –0.5 mm day
–1

. 
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Figure 3. Maximum precipitation composites over the CONUS during 2010–14 for (a) gauge, (b) CMORPH, (c) SCaMPR, (d) 3B42RT, 

(e) GPI, and (f) Hydro-Estimator (units of mm day–1). Maximum composite maps signify the 95th percentile of the daily conditional pre-

cipitation distributions at each grid point during 2010–14. 

 

http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_3.png
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Figure 4. Average conditional precipitation composite for the gauge during summer 2010–14 (panel a), as well as spatial bias maps for (b) 

CMORPH, (c) SCaMPR, (d) 3B42RT, (e) GPI, and (f) Hydro-Estimator. These spatial bias maps result from subtracting the average 

conditional gauge composite values from the satellite composite values in each grid cell (units of mm day–1). 

 

http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_4.png
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Figure 5. As in Fig. 4, but for winter 2010–14. 

 

http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_5.png


 

Rudlosky et al. NWA Journal of Operational Meteorology 1 March 2016 

ISSN 2325-6184, Vol. 4, No. 5 68 

 
Figure 6. Seasonal average biases summarizing the average conditional composite maps for each satellite (color-coded) and radar (black) 

relative to the gauge. Biases from all 13 191 of the 0.25° grid cells in the average conditional composites (spatial bias maps) are averaged 

to compute these baseline CONUS-wide values for each product and season. The average biases are only descriptive of areas with 0.1 mm 

day–1. 

 

The Hydro-Estimator composite is the best correlated 

with gauge during winter (r = 0.85), when nearly 70% 

of its biases are in the 0.5 to 1.5 mm day
–1

 range. The 

GPI distribution is the most positively biased, with its 

bias-occurrence frequency peak in the 1.5–2.5 mm 

day
–1

 range. During winter, the GPI has the largest 

average bias (1.76 mm day
–1

) and the lowest correla-

tion (r = 0.27), indicating that the GPI composite dif-

fers most from the gauge composite. 

 The annual and seasonal average conditional com-

posites for all five satellite products are correlated with 

the average conditional gauge composites (Fig. 8). 

Many studies have investigated spatial correlations by 

examining the correlations between daily observations 

at individual grid cells. However, our spatial correla-

tions simply quantify the similarity between the aver-

age conditional composite maps, with higher correla-

tions indicating more similar composite maps. The 

correlations vary more seasonally (Fig. 8b) than an-

nually (Fig. 8a), and differ most between summer and 

winter. Correlations generally are higher and less var-

iable among products during summer than winter (i.e., 

the satellite composite maps are more similar to the 

gauge composites during summer). During summer 

(winter), correlations for all five satellites vary be-

tween 0.75 and 0.93 (0.27 and 0.85). 

 The POD and FAR maps (Figs. 9–10) complement 

the spatial bias maps, average bias values, and bias 

frequency histograms to complete our analysis of the 

annual and seasonal performance of the satellite-

derived precipitation estimates. During summer, the 

CMORPH POD exceeds 70% throughout much of the 

http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_6.png
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Figure 7. Bias frequency histograms for (a) summer and (b) winter 

for all five satellites and the radar relative to gauge. Different col-

ors represent different satellite products, with dotted (solid) lines 

indicating the IR-based (PMW-based) products. The lines repre-

sent the bias values for all CONUS grid cells in each of the aver-

age conditional composites. Correlations and average biases are in-

cluded in each map. The correlations quantify the similarity be-

tween the average conditional composite maps (i.e., between the 

satellite and gauge composites), with higher correlations indicating 

more similar composite maps. 

 

CONUS (Fig. 9a), and the FAR is generally <20% 

(except along the West Coast; Fig. 9c). During winter, 

the CMORPH POD only exceeds 70% in small por-

tions of the Southeast (Fig. 9b), and the FAR exceeds 

50% throughout much of the southwestern CONUS 

(Fig. 9d). 

 Figure 10 presents the SCaMPR POD and FAR 

maps for summer and winter 2010–14. During sum-

mer, the SCaMPR FAR distribution is similar to that 

of CMORPH (i.e., generally <20%), but the POD dis-

tributions differ. The SCaMPR POD exceeds 70% 

throughout much of the central and southeastern 

CONUS (Fig. 10a) rather than most of the CONUS for 

 
Figure 8. Annual (a) and seasonal (b) correlations between the av-

erage conditional gauge composite and all five satellite compos-

ites. The correlations quantify the similarity between the average 

conditional composite maps, with higher correlations indicating 

that the composite maps are more similar. Correlations are only 

performed for days when all seven products are available, and the 

black column reports an average of all five satellite values. 

 

CMORPH (Fig. 9a). During winter, the SCaMPR POD 

is relatively uniform throughout the CONUS (40–

60%; Fig. 10b), while the FAR exceeds 40% through-

out the Great Plains and southwestern CONUS (Fig. 

9d). 

 

4. Discussion 

 This study analyzes daily composites of operation-

al precipitation estimation products that are provided 

to forecasters at fine temporal resolutions (e.g., every 

30 min). Although the annual and seasonal composites 

discussed herein may not capture all of the variability 

in the finer temporal resolution products, the compos-

ites are representative of the general performance ten-

dencies of the products at their finer temporal scales. 

http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_7.png
http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_8.png


 

Rudlosky et al. NWA Journal of Operational Meteorology 1 March 2016 

ISSN 2325-6184, Vol. 4, No. 5 70 

 
Figure 9. The probability of detection (POD) and false alarm ratio (FAR) for CMORPH during summer (left) and winter (right) during 

2010–14. The POD is the fraction of instances where the gauges measure >0.1 mm day–1 for which the satellite also estimates precipitation 

>0.1 mm day–1. The FAR is the fraction of instances where the satellite estimates >0.1 mm day–1 for which the gauges measure <0.1 mm 

day–1. The POD and FAR are only calculated for grid cells with 30 observations to ensure a representative sample (white grid cell indicate 

this threshold was not met). 

 

The satellite products rely on PMW and/or IR obser-

vations to estimate precipitation. Differences in these 

observation methods lead to seasonal and regional 

biases that influence the operational utility of the satel-

lite precipitation estimates. Proper application of the 

satellite precipitation estimates requires knowledge of 

their relative strengths and weaknesses. Readers inter-

ested in the performance of the various products dur-

ing individual days or seasons are referred to the Unit-

ed States IPWG validation page (cics.umd.edu/ipwg/). 

 The CPC gauge data provide the best character-

ized estimate of precipitation at the surface over the 

CONUS. The CPC gauge analysis contains quality 

controlled data from over 7000 stations across the 

CONUS, which are objectively analyzed to a 0.25° 

latitude/longitude grid. We also evaluate the radar-

only Stage II product with no bias correction, which is 

a composite of hourly digital precipitation radar esti-

mates on the HRAP grid. Although biases in radar-de-

rived precipitation vary non-uniformly over individual 

radar domains, the radar data used herein do not ac-

count for this non-uniformity. Hunter (1996) showed 

that radar precipitation estimation is degraded by cali-

bration (Z–R relationship), attenuation, frozen hydro-

meters, the melting layer, refraction (anomalous prop-

agation), beam blockage, overshooting, and beam 

spreading. This leads to the relatively poor perform-

ance of the Stage II radar data depicted in Fig. 1d 

(coverage issues in the western CONUS) and Fig. 7 

(relatively small correlations). 

 The gauge (Fig. 1c) and radar (Fig. 1d) distribu-

tions depict similar precipitation patterns, with average 

http://cics.umd.edu/ipwg/
http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_9.png
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Figure 10. As in Fig. 9, but for SCaMPR. 

 

conditional precipitation estimates exceeding 6 mm 

day
–1

 and 5 mm day
–1

, respectively, over most of the 

Great Plains and southeastern CONUS (despite the 

limitations of the Stage II radar data). Average con-

ditional precipitation rates are generally <4 mm day
–1

 

west of the Great Plains with the exception of large 

gauge values along the West Coast and radar coverage 

issues in the Intermountain West. The radar minus 

gauge bias is ±2 mm day
–1

 over large portions of the 

CONUS (Fig. 1b). Where the radar and gauge values 

differ (e.g., along the East and West Coasts), the radar-

only product generally underestimates precipitation by 

3–5 mm day
–1

 relative to gauge. 

 The satellite products estimate precipitation using 

observations from PMW, IR, or both, with blended 

products using primarily PMW or IR with the alternate 

in a secondary role. PMW sensors observe the verti-

cally integrated amount of ice (i.e., ice water path), 

whereas IR sensors derive precipitation estimates from 

the brightness temperature observed at cloud top. The 

cloud top brightness temperatures are less directly 

related to the distribution of ice, supercooled water, 

and precipitation than the PMW observations. 

 The spatial distributions of the five satellite pre-

cipitation estimates appear most similar when examin-

ing the maximum daily precipitation observed at each 

grid cell (Fig. 3). Although the satellite estimates 

exhibit similar spatial patterns, their magnitudes are 

much greater than the gauge magnitudes. Besides GPI, 

each satellite greatly overestimates the maximum daily 

precipitation relative to gauge. In the central and 

eastern CONUS, the gauge-reported maximum daily 

precipitation values generally range between 20 and 40 

mm day
–1

, whereas the satellite-reported values gen-

erally exceed 40 mm day
–1

. Thus, during heavy rainfall 

events, forecasters should expect the satellite products 

to overestimate precipitation relative to gauge. 

http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_10.png
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 The spatial bias maps, average bias values, and 

bias frequency histograms show that each satellite 

product overestimates precipitation during summer 

(2010–14). Figure 6 reveals that during summer 

SCaMPR, Hydro-Estimator, and CMORPH have the 

largest CONUS-wide average bias values. Bias fre-

quency histograms also show positively biased satel-

lite distributions during summer (Fig. 7a), revealing 

that large overestimates occur more frequently than 

large underestimates. 

 Several factors contribute to the regional biases 

observed during summer. Because PMW estimates 

mainly rely on the vertically integrated amount of ice, 

the abundance of ice in warm-season convection often 

results in precipitation overestimates (e.g., Kummerow 

et al. 2001; You and Liu 2012). The predominant local 

microphysical regime can cause systematic regional 

biases in global precipitation products (Berg et al. 

2006, Elsaesser and Kummerow 2015). In reality, the 

same ice scattering signal can be associated with a 

range of surface rain rates, depending on the local 

vertical instability, supercooled water, and available 

moisture. Most of the PMW algorithms are derived 

from TRMM measurements, which are limited to the 

tropics (±40° Latitude). The TRMM relationships are 

applied globally, thereby assuming sub-tropical ambi-

ent conditions for midlatitude regions. Much of the 

regional variability in the PMW product performance 

can be attributed to regional variability in the micro-

physical regime. 

 IR-based algorithms depend on the relationship 

between cold cloud top brightness temperatures and 

surface precipitation, which is not as strong as the 

relationship between PMW observations and surface 

precipitation. Mesoscale convective systems (MCSs) 

are the dominant precipitation mode during summer in 

the central CONUS (Stenz et al. 2014). These systems 

often develop very large cold cloud regions with a 

mixture of convective (heavy) and stratiform (light) 

precipitation that the IR algorithms struggle to distin-

guish between. Stenz et al. (2014) found that SCaMPR 

estimates showed a strong dry bias for convective core 

regions, and a strong wet bias for anvil regions. Be-

cause convective cells are often embedded in much 

larger cold cloud features, overestimates occur more 

frequently and over a greater area than underestimates. 

In this way, MCSs contribute to the positive summer 

biases in the IR-based products over the central and 

southeastern CONUS. 

 The POD and FAR are suggestive of whether 

satellite biases are caused by misclassifying the 

frequency or intensity of precipitation. For instance, 

regions with overestimates and high FAR values are 

likely caused by overestimating precipitation frequen-

cy. The greatest SCaMPR overestimates during sum-

mer occur over Iowa, Nebraska, and Kansas (Fig. 4c), 

with positive biases >5 mm day
–1

 over large portions 

of these states. This region has relatively low FAR 

values (<30%; Fig. 8c), so much of the positive bias 

likely relates to precipitation intensity overestimates. 

Much of this overestimation occurs outside the con-

vective cores where relationships between IR bright-

ness temperatures and surface precipitation are less 

direct. 

 Winter exhibits more performance variability a-

mong satellite products and a mix of both positive and 

negative biases (Fig. 7b). SCaMPR generally over-

estimates winter precipitation north of 36°N except 

over portions of Washington, Oregon, and California. 

GPI (Fig. 5e) has a similar spatial pattern to SCaMPR, 

but the magnitudes of the overestimates are much 

larger. Hydro-Estimator generally overestimates win-

ter precipitation throughout the CONUS by >5 mm 

day 
–1

. During winter, the SCaMPR POD is relatively 

uniform throughout the CONUS (40–60%; Fig. 10b), 

while the FAR exceeds 40% throughout the Great 

Plains and southwestern CONUS (Fig. 9d). During 

winter, cloud top temperatures remain cold, but they 

are not always associated with convective precipita-

tion. This suggests that much of the positive SCaMPR 

and Hydro-Estimator biases during winter can be 

attributed to false detections. The IR-based estimates 

are positively biased during winter because cloud top 

temperatures (heights) are not as indicative of convec-

tive precipitation as they are during summer. 

 Our findings illustrate the difficulties with using 

PMW wavelengths in mountainous regions as well as 

those with snow and ice cover. CMORPH and 

3B42RT are both negatively biased along the West 

Coast, coincident with the Cascade and Sierra Nevada 

Mountains. The PMW sensors often miss rainfall 

along the West Coast owing to the relatively low cloud 

top heights and limited ice content typically associated 

with the prevailing orographic precipitation. Reduced 

performance over the Rocky and Cascade Mountains 

agrees with the previously reported performance 

characteristics over mountainous terrain (e.g., Tian et 

al. 2007). Snow and ice can contaminate PMW 

observations, and light precipitation can reduce PMW 

performance (Ebert et al. 2007; Iturbide-Sanchez et al. 

2011). Winter precipitation presents a weaker ice 
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scattering signature, contributing to the negative 

CMORPH biases. 

 The CMORPH and 3B42RT distributions differ 

considerably during winter. Although 3B42RT has a 

small positive average bias during winter, CMORPH 

has a large negative average bias. CMORPH exhibits 

high FAR values over the Great Plains and Southwest 

during winter (Fig. 8d). The CMORPH POD decreases 

quickly north of 40°N during winter and relatively low 

POD values occur over the elevated terrain of the 

Appalachian and Rocky Mountains. During winter, the 

CMORPH POD only exceeds 70% in small portions of 

the Southeast (Fig. 9b), and the FAR exceeds 50% 

throughout much of the central and southwestern 

CONUS (Fig. 9d). Areas with higher POD values 

along the northwestern coast coincide with negative 

biases (Fig. 5b)—indicating precipitation intensity 

underestimates, along with the missed detections in 

this region. CMORPH has no explicit representation of 

snowfall, contributing to its generally poor perfor-

mance during winter. Operational feedback has moti-

vated the CPC to include snowfall estimates in future 

versions of CMORPH. Although 3B42RT includes 

snow estimates, its largest relative biases occur during 

winter owing to difficulties estimating the snow-water 

equivalent (Yong et al. 2012). Caution must be taken 

when interpreting the PMW-based products during 

winter, especially in snow- and ice-covered regions. 

 Satellites provide useful information but must be 

properly calibrated to derive accurate products. Al-

though most useful outside the CONUS, satellite pre-

cipitation estimates complement the radar and gauge 

estimates over the CONUS, providing an alternate 

perspective on one of the most impactful sensible 

weather phenomena. This study demonstrated impor-

tant differences between the IR- and PMW-based 

precipitation estimates that lead to biases that vary by 

region and season. IR-based estimates are provided 

more frequently (i.e., every 15–30 min) than the PMW 

estimates, and could be provided as frequently as 

every 5 min following launch of the next series of geo-

stationary satellites (GOES-R/S). The Global Precipita-

tion Measurement (GPM) mission has developed the 

Integrated Multi-satellite Retrievals for GPM product 

suite as a replacement for the TRMM TMPA (e.g., 

3B42RT). The PMW-based products perform the best 

relative to gauge, but these products are only provided 

about every 3 h. CMORPH, 3B42RT, and SCaMPR 

typically outperform the IR-only products (GPI and 

Hydro-Estimator), illustrating the benefits of advanced 

algorithm techniques leveraging both IR and PMW 

observations. The dependence of product performance 

on local conditions suggests that an ensemble of the 

various satellite-based products may produce superior 

results. Future studies should explore composites of 

these products with weighted inputs based on know-

ledge of the product performance tendencies. Despite 

their limitations, when properly characterized, satellite 

precipitation estimates are valuable tools for weather 

forecasters, hydrologists, and climatologists. 
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